Introduction

Dialysis access AVF and AVG are known that the obstruction can be caused a decrease in blood pressure after dialysis later and at home after dialysis. We will decide the DW of dialysis in reference to cardiothoracic ratio and blood pressure during hemodialysis, and the inferior vena cava vein diameter. We are using BCM® as a means to consider the proper removal of excess body fluid. By using the BCM®, we can evaluate too removal body fluid by hemodialysis.

Explanation of BCM®

BCM®: Body Composition Monitor

BCM® is in Body Composition Analyzer using the principle of electrical resistance. A new technique of sending a weak electric current into the body using the electrical resistance to measure body fat, muscle mass and water content has been developed. It works similar to a home body fat analyzer.

Electricity flows through the water in the body and depending on the amount of water conductivity varies.

- High fat content (less muscle) ➞ electrical resistance is greater
- Low fat content (lots of muscle) ➞ electrical resistance is lower

The differences in electrical resistance values, are used to determine the percentages.

OH: Over Hydration mean an excess of body fluid or a lack of body fluid referred to as +Over Hydration and -Over Hydration respectively. DW in dialysis to determine the BCM® is measured at the weekend asked, Oh, decided in a zone in the DW.

Discussion

These patient's group were managed by reasonable DW that was no problem in cardiothoracic ratio and blood pressure during hemodialysis. However, on BCM® check the occlusion cases had been removed of excess water from the proper weight. These patients were not taken into account the proper DW set, for the reason that was causing in low blood pressure and the prethrombotic State dialysis later

Conclusion

#1 Managing blood pressure through DW management when OH is low increases the risk of occlusion.

#2 By combining OH, IVC, blood pressure, and CTR data in VA management, you can decrease the risk of vascular access trouble.

Fig.1: Comparison of OH

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTA group (Stenosis)</td>
<td>329</td>
<td>0.07</td>
<td>1.49</td>
</tr>
<tr>
<td>PTA group (Occlusion)</td>
<td>81</td>
<td>-0.32</td>
<td>1.69</td>
</tr>
</tbody>
</table>

Fig.2: Characteristics of PTA

- **Stenosis** (N=329)
 - Gender (male/female): 189/140
 - Age year: 67.7 (11.2)

- **Occlusion** (N=81)
 - Gender (male/female): 52/29
 - Age year: 65.8 (11.3)

Fig.3: Characteristics of PTA and Non PTA group

- **PTA group** (N=32)
 - Gender (male/female): 19/13
 - Age year: 65.7 (12.3)
 - CTR (%): 50.5 (4.8)
 - Hb (g/dl): 11.2 (1.4)

- **Non PTA group** (N=82)
 - Gender (male/female): 56/26
 - Age year: 62.7 (13.7)
 - CTR (%): 49.2 (5.6)
 - Hb (g/dl): 11.0 (1.0)

Fig.4: OH result of Our Clinic’s Dialysis Patients

Fig.5: Correlation between OH and IVC with or without PTA

Fig.6: Correlation of OH and BP prior to dialysis with or without PTA

Fig.7: Correlation between OH and CTR with or without PTA

Fig.8: Correlation between OH and Hb. with or without PTA